517 research outputs found

    An XMM-Newton study of the sub-structure in M87's halo

    Get PDF
    The high signal to noise and good point spread function of XMM have allowed the first detailed study of the interaction between the thermal and radio emitting plasma in the central regions of M87. We show that the X-ray emitting structure, previously seen by ROSAT, is thermal in nature and that the east and southwest extensions in M87's X-ray halo have a significantly lower temperature (kT= 1.5 keV) than the surrounding ambient medium (kT= 2.3 keV). There is little or no evidence for non-thermal emission with an upper limit on the contribution of a power law component of spectral index flatter than 3 being less than 1% of the flux in the region of the radio lobes.Comment: 6 pages, 8 color figures, to be published in A&A, number 36

    Substructure of the galaxy clusters in the REXCESS sample: observed statistics and comparison to numerical simulations

    Full text link
    We study the substructure statistics of a representative sample of galaxy clusters by means of two currently popular substructure characterisation methods, power ratios and centroid shifts. We use the 31 clusters from the REXCESS sample, compiled from the southern ROSAT All-Sky cluster survey REFLEX with a morphologically unbiased selection in X-ray luminosity and redshift, all of which have been reobserved with XMM-Newton. We investigate the uncertainties of the substructure parameters and examine the dependence of the results on projection effects, finding that the uncertainties of the parameters can be quite substantial. Thus while the quantification of the dynamical state of individual clusters with these parameters should be treated with extreme caution, these substructure measures provide powerful statistical tools to characterise trends of properties in large cluster samples. The centre shift parameter, w, is found to be more sensitive in general. For the REXCESS sample neither the occurence of substructure nor the presence of cool cores depends on cluster mass. There is a significant anti-correlation between the existence of substantial substructure and cool cores. The simulated clusters show on average larger substructure parameters than the observed clusters, a trend that is traced to the fact that cool regions are more pronounced in the simulated clusters, leading to stronger substructure measures in merging clusters and clusters with offset cores. Moreover, the frequency of cool regions is higher in the simulations than in the observations, implying that the description of the physical processes shaping cluster formation in the simulations requires further improvement.Comment: Mauscript submitted to Astronomy and Astrophysics, 20 figure

    Redshift evolution of the 1.4 GHz volume averaged radio luminosity function in clusters of galaxies

    Full text link
    By cross-correlating large samples of galaxy clusters with publicly available radio source catalogs, we construct the volume-averaged radio luminosity function (RLF) in clusters of galaxies, and investigate its dependence on cluster redshift and mass. In addition, we determine the correlation between the cluster mass and the radio luminosity of the brightest source within 50 kpc from the cluster center. We use two cluster samples: the optically selected maxBCG cluster catalog and a composite sample of X-ray selected clusters. The radio data come from the VLA NVSS and FIRST surveys. We use scaling relations to estimate cluster masses and radii to get robust estimates of cluster volumes. We determine the projected radial distribution of sources, for which we find no dependence on luminosity or cluster mass. Background and foreground sources are statistically accounted for, and we account for confusion of radio sources by adaptively degrading the resolution of the radio source surveys. We determine the redshift evolution of the RLF under the assumption that its overall shape does not change with redshift. Our results are consistent with a pure luminosity evolution of the RLF in the range 0.1 < z < 0.3 from the optical cluster sample. The X-ray sample extends to higher redshift and yields results also consistent with a pure luminosity evolution. We find no direct evidence of a dependence of the RLF on cluster mass from the present data, although the data are consistent with the most luminous sources only being found in high-mass systems.Comment: Accepted for publication in A&

    The Representative XMM-Newton Cluster Structure Survey (REXCESS) of an X-ray Luminosity Selected Galaxy Cluster Sample

    Get PDF
    The largest uncertainty for cosmological studies using clusters of galaxies is introduced by our limited knowledge of the statistics of galaxy cluster structure, and of the scaling relations between observables and cluster mass. To improve on this situation we have started an XMM-Newton Large Programme for the in-depth study of a representative sample of 33 galaxy clusters, selected in the redshift range z=0.055 to 0.183 from the REFLEX Cluster Survey, having X-ray luminosities above 0.4 X 10^44 h_70^-2 erg s^-1 in the 0.1 - 2.4 keV band. This paper introduces the sample, compiles properties of the clusters, and provides detailed information on the sample selection function. We describe the selection of a nearby galaxy cluster sample that makes optimal use of the XMM-Newton field-of-view, and provides nearly homogeneous X-ray luminosity coverage for the full range from poor clusters to the most massive objects in the Universe. For the clusters in the sample, X-ray fluxes are derived and compared to the previously obtained fluxes from the ROSAT All-Sky Survey. We find that the fluxes and the flux errors have been reliably determined in the ROSAT All-Sky Survey analysis used for the REFLEX Survey. We use the sample selection function documented in detail in this paper to determine the X-ray luminosity function, and compare it with the luminosity function of the entire REFLEX sample. We also discuss morphological peculiarities of some of the sample members. The sample and some of the background data given in this introductory paper will be important for the application of these data in the detailed studies of cluster structure, to appear in forthcoming publications.Comment: 17 pages, 17 figures; to appear in A&A. A pdf version with full-quality figures can be found at ftp://ftp.xray.mpe.mpg.de/people/gwp/xmmlp/xmmlp.pd

    eROSITA Science Book: Mapping the Structure of the Energetic Universe

    Full text link
    eROSITA is the primary instrument on the Russian SRG mission. In the first four years of scientific operation after its launch, foreseen for 2014, it will perform a deep survey of the entire X-ray sky. In the soft X-ray band (0.5-2 keV), this will be about 20 times more sensitive than the ROSAT all sky survey, while in the hard band (2-10 keV) it will provide the first ever true imaging survey of the sky at those energies. Such a sensitive all-sky survey will revolutionize our view of the high-energy sky, and calls for major efforts in synergic, multi-wavelength wide area surveys in order to fully exploit the scientific potential of the X-ray data. The design-driving science of eROSITA is the detection of very large samples (~10^5 objects) of galaxy clusters out to redshifts z>1, in order to study the large scale structure in the Universe, test and characterize cosmological models including Dark Energy. eROSITA is also expected to yield a sample of around 3 millions Active Galactic Nuclei, including both obscured and un-obscured objects, providing a unique view of the evolution of supermassive black holes within the emerging cosmic structure. The survey will also provide new insights into a wide range of astrophysical phenomena, including accreting binaries, active stars and diffuse emission within the Galaxy, as well as solar system bodies that emit X-rays via the charge exchange process. Finally, such a deep imaging survey at high spectral resolution, with its scanning strategy sensitive to a range of variability timescales from tens of seconds to years, will undoubtedly open up a vast discovery space for the study of rare, unpredicted, or unpredictable high-energy astrophysical phenomena. In this living document we present a comprehensive description of the main scientific goals of the mission, with strong emphasis on the early survey phases.Comment: 84 Pages, 52 Figures. Published online as MPE document. Edited by S. Allen. G. Hasinger and K. Nandra. Few minor corrections (typos) and updated reference

    Self-Assembly from Milli- to Nanoscales: Methods and Applications

    Get PDF
    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed

    A Cilia-inspired Closed-loop Sensor-actuator Array

    Get PDF
    © 2018, Jilin University. Cilia are finger-like cell-surface organelles that are used by certain varieties of aquatic unicellular organisms for motility, sensing and object manipulation. Initiated by internal generators and external mechanical and chemical stimuli, coordinated undulations of cilia lead to the motion of a fluid surrounding the organism. This motion transports micro-particles towards an oral cavity and provides motile force. Inspired by the emergent properties of cilia possessed by the pond organism P. caudatum, we propose a novel smart surface with closed-loop control using sensor-actuators pairings that can manipulate objects. Each vibrating motor actuator is controlled by a localised microcontroller which utilises proximity sensor information to initiate actuation. The circuit boards are designed to be plug-and-play and are infinitely up-scalable and reconfigurable. The smart surface is capable of moving objects at a speed of 7.2 millimetres per second in forward or reverse direction. Further development of this platform will include more anatomically similar biomimetic cilia and control

    Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters

    Get PDF
    We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. 14 new clusters were detected by XMM, including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6 clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We discuss our results in the context of the full XMM validation programme, in which 51 new clusters have been detected. This includes 4 double and 2 triple systems, some of which are chance projections on the sky of clusters at different z. We find that association with a RASS-BSC source is a robust indicator of the reliability of a candidate, whereas association with a FSC source does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4 arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this level. The corresponding mass threshold depends on z. Systems with M500 > 5 10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the YX-Y500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. (abridged)Comment: accepted by A&

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    • …
    corecore